Respuesta :

Answer:

OPTION B: [tex]$ \frac{-2\sqrt{5}}{5} $[/tex]

Step-by-step explanation:

Given [tex]$ cot \theta = -\frac{\sqrt{5}}{2} $[/tex]

We know that, [tex]$ \frac{1}{cot \theta} = tan \theta $[/tex]

[tex]$ \implies tan \theta = \frac{1}{-\frac{\sqrt{5}}{2}} $[/tex]

[tex]$ = -\frac{2}{\sqrt{5}} $[/tex]

Multiplying and dividing by [tex]$ \sqrt{5} $[/tex], we get:

[tex]$ tan \theta = - \frac{2 \sqrt{5}}{\sqrt{5}\times \sqrt{5}}} $[/tex]

[tex]$ \implies tan \theta = -\frac{2\sqrt{5}}{5} $[/tex]

Hence, OPTION B is the answer.

Answer:

c

Step-by-step explanation:

just did it