A 300-kg object and a 600-kg object are separated by 4.60 m.

(a) Find the magnitude of the net gravitational force exerted by these objects on a 35.0-kg object placed midway between them. N
(b) At what position (other than an infinitely remote one) can the 35.0-kg object be placed so as to experience a net force of zero from the other two objects

Respuesta :

Answer:

[tex]1.32391\times 10^{-7}\ N[/tex]

2.69 m

Explanation:

M = Mass in the middle = 35 kg

[tex]m_1[/tex] = 600 kg

[tex]m_2[/tex] = 300 kg

r = Distance

The net force between the objects would be

[tex]F=\dfrac{GMm_1}{r^2}-\dfrac{GMm_2}{r^2}\\\Rightarrow F=\dfrac{GM(m_1-m_2)}{r^2}\\\Rightarrow F=\dfrac{6.67\times 10^{-11}\times 35(600-300)}{2.3^2}\\\Rightarrow F=1.32391\times 10^{-7}\ N[/tex]

The magnitude of the net gravitational force exerted by these objects is [tex]1.32391\times 10^{-7}\ N[/tex]

Now,

[tex]\dfrac{GMm_1}{r^2}=\dfrac{GMm_2}{(4.6-r)^2}\\\Rightarrow \dfrac{m_1}{r^2}=\dfrac{m_2}{(4.6-r)^2}\\\Rightarrow r^2-9.2r+21.16=\dfrac{m_2}{m_1}r^2\\\Rightarrow r^2-9.2r+21.16=\dfrac{300}{600}r^2\\\Rightarrow r^2-9.2r+21.16=0.5r^2\\\Rightarrow 0.5r^2-9.2r+21.16=0\\\Rightarrow 50r^2-920r+2116=0[/tex]

Solving the above equation we get

[tex]r=\frac{-\left(-920\right)+\sqrt{\left(-920\right)^2-4\cdot \:50\cdot \:2116}}{2\cdot \:50}, \frac{-\left(-920\right)-\sqrt{\left(-920\right)^2-4\cdot \:50\cdot \:2116}}{2\cdot \:50}\\\Rightarrow r=15.7, 2.69[/tex]

So, the distance at which the force will ben zero is 2.69 m

Answer:

Explanation:

m1 = 300 kg

m2 = 600 kg

d = 4.6 m

(a) m = 35 kg

Let the force between m1 and m is F1. Use the Newton's gravitation law

[tex]F_{1}=\frac{Gm_{1}m}{\left (0.5d  \right )^{2}}[/tex]

[tex]F_{1}=\frac{6.67\times 10^{-11}\times 300\times 35}{2.3\times 2.3}[/tex]

F1 = 1.324 x 10^-7 N (towards m1, i.e., leftwards)

Let the force between m2 and m is F2. Use the Newton's gravitation law

[tex]F_{1}=\frac{Gm_{2}m}{\left (0.5d  \right )^{2}}[/tex]

[tex]F_{1}=\frac{6.67\times 10^{-11}\times 600\times 35}{2.3\times 2.3}[/tex]

F1 = 2.65 x 10^-7 N (towards m2, i.e., rightwards)

Net force on m is

F = F2 - F1

F = (2.65 - 1.324) x 10^-7

F = 1.33 x 10^-7 N towards right

(b) Let it is placed at a distance r from m1 so that the net force is zero.

[tex]\frac{Gm_{1}m}{r^{2}}=\frac{Gm_{2}m}{\left ( d-r \right )^{2}}[/tex]

[tex]\frac{300}{r^{2}}=\frac{600}{\left ( d-r \right )^{2}}[/tex]

1.414 r = 4.6 - r

2.4 r = 4.6

r = 1.92 m

Thus, the net force on 35 kg is zero at a distance of 1.92 m from 300 kg.

Ver imagen Vespertilio