Respuesta :
Answer:
Net head = 380cm
bhp = 17.710kW
Explanation:
Angular velocity of centrifugal pump:
[tex]w=\frac{2\pi n}{60}=\frac{2\pi (750)}{60}=78.54\frac{rad}{s}[/tex]
Normal velocity component at outlet of pump:
[tex]V_{2,n}=\frac{V}{2\pi r_{2}b_{2}}=\frac{0.573}{2\pi (0.24)(0.162)}}=2.346\frac{m}{s}[/tex]
Tangential velocity component at exit of the pump:
[tex]V_{2,t}=v_{2,n}tan\alpha _{2}=(2.346)tan(35)=1.643\frac{m}{s}[/tex]
Normal velocity component at inlet of pump:
[tex]V_{1,n}=\frac{V}{2\pi r_{1} b_{1}}=\frac{0.573}{2\pi (0.12)(0.18)}=4.22\frac{m}{s}[/tex]
Tangential velocity component at inlet of the pump:
[tex]V_{1,t}=v_{1,n}tan\alpha _{1}=(4.22)tan(0)=0\frac{m}{s}[/tex]
Equivalent head in centimetre of water column:
[tex]H_{water}=H(\frac{rho_{air}}{rho_{water}})\\\\H_{water}=(\frac{w}{g} )(r_{2}V_{2,t}-r_{1}V_{1,t})(\frac{rho_{air}}{rho_{water}}) \\\\H_{water}=(\frac{78.54}{9.81})((0.24)(1.643)-(0.12)(0)})(\frac{1.2}{998})=38m=380cm[/tex]
Break horse power:
[tex]bhp=rho_{water} gHV=rho_{water} g[(\frac{w}{g})(r_{2}V_{2,t}-r_{1}V_{1,t})]V\\\\bhp=(998)(9.81)[(\frac{78.54}{9.81})((0.24)(1.643)-(0.12)(0))](0.573)=17710W=17.710kW[/tex]