Respuesta :

BC is 10 units and AC is [tex]5+5\sqrt{3}[/tex] units

Step-by-step explanation:

Let us revise the sine rule

In ΔABC:

  • [tex]\frac{AB}{sin(C)}=\frac{BC}{sin(A)}=\frac{AC}{sin(B)}[/tex]
  • AB is opposite to ∠C
  • BC is opposite to ∠A
  • AC is opposite to ∠B

Let us use this rule to solve the problem

In ΔABC:

∵ m∠A = 45°

∵ m∠C = 30°

- The sum of measures of the interior angles of a triangle is 180°

∵ m∠A + m∠B + m∠C = 180

∴ 45 + m∠B + 30 = 180

- Add the like terms

∴ m∠B + 75 = 180

- Subtract 75 from both sides

∴ m∠B = 105°

∵ [tex]\frac{AB}{sin(C)}=\frac{BC}{sin(A)}[/tex]

∵ AB = [tex]5\sqrt{2}[/tex]

- Substitute AB and the 3 angles in the rule above

∴ [tex]\frac{5\sqrt{2}}{sin(30)}=\frac{BC}{sin(45)}[/tex]

- By using cross multiplication

∴ (BC) × sin(30) = [tex]5\sqrt{2}[/tex] × sin(45)

∵ sin(30) = 0.5 and sin(45) = [tex]\frac{1}{\sqrt{2}}[/tex]

∴ 0.5 (BC) = 5

- Divide both sides by 0.5

∴ BC = 10 units

∵ [tex]\frac{AB}{sin(C)}=\frac{AC}{sin(B)}[/tex]

- Substitute AB and the 3 angles in the rule above

∴ [tex]\frac{5\sqrt{2}}{sin(30)}=\frac{AC}{sin(105)}[/tex]

- By using cross multiplication

∴ (AC) × sin(30) = [tex]5\sqrt{2}[/tex] × sin(105)

∵ sin(105) = [tex]\frac{\sqrt{6}+\sqrt{2}}{4}[/tex]

∴ 0.5 (AC) = [tex]\frac{5+5\sqrt{3}}{2}[/tex]

- Divide both sides by 0.5

∴ AC = [tex]5+5\sqrt{3}[/tex] units

BC is 10 units and AC is [tex]5+5\sqrt{3}[/tex] units

Learn more:

You can learn more about the sine rule in brainly.com/question/12985572

#LearnwithBrainly