Respuesta :
Answer:
[tex]g(x)=0[/tex] when [tex]x=-4[/tex] and [tex]x=\frac{1}{6}[/tex]
Step-by-step explanation:
When [tex]g(x)=0[/tex]
[tex]6x^2+23x-4=0[/tex]
This is a quadratic equation and we solve it using the quadratic formula which says for [tex]ax^2+bx+c=0[/tex]
[tex]x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]
in our case
[tex]a=6\\b=23\\c=-4[/tex]
so we put those in and get:
[tex]x=\frac{-23\pm\sqrt{23^2-4(6)(-4)} }{2(6)}=\frac{-23\pm25}{12}[/tex]
[tex]\boxed{x=-4}\\\boxed{ x=1/6}[/tex]
Answer:
the answer is B Good LUCK :)
Step-by-step explanation: