The function g(x) is defined as g(x) = 6x2 + 23x – 4. When does g(x) = 0? x = –6 or x = StartFraction 1 Over 4 EndFraction x = –4 or x = StartFraction 1 Over 6 EndFraction x = StartFraction negative 1 Over 4 EndFraction or x = 6 x = StartFraction negative 1 Over 6 EndFraction or x = 4

Respuesta :

Answer:

[tex]g(x)=0[/tex] when [tex]x=-4[/tex] and  [tex]x=\frac{1}{6}[/tex]

Step-by-step explanation:

When [tex]g(x)=0[/tex]

[tex]6x^2+23x-4=0[/tex]

This is a quadratic equation and we solve it using the quadratic formula which says for [tex]ax^2+bx+c=0[/tex]

[tex]x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]

in our case

[tex]a=6\\b=23\\c=-4[/tex]

so we put those in and get:

[tex]x=\frac{-23\pm\sqrt{23^2-4(6)(-4)} }{2(6)}=\frac{-23\pm25}{12}[/tex]

[tex]\boxed{x=-4}\\\boxed{ x=1/6}[/tex]

Answer:

the answer is B Good LUCK :)

Step-by-step explanation: