Respuesta :

https://photomath.net/s/o2P0wN

Answer:

the solutions are:

[tex]x_{1}=-2+\sqrt{26}[/tex]

[tex]x_{2}=-2-\sqrt{26}[/tex]

and the sum of solutions is:

-4

Step-by-step explanation:

the expression is:

[tex]3x(x+4)=66\\[/tex]

doing the multiplication

[tex]3x^2+12x=66\\\\3x^2+12x-66=0[/tex]

dividing everything by 3:

[tex]x^2+4x-22=0[/tex]

we use the quadratic formula to find the solutions:

in this case since we have an equation in the form

[tex]ax^2+bx+c=0[/tex]

where

[tex]a=1\\b=4\\c=-22[/tex]

the quadratic formula is:

[tex]x=\frac{-b+-\sqrt{b^2-4ac} }{2a} \\\\x=\frac{-4+-\sqrt{4^2-4*1*(-22))=} }{2}\\ x=\frac{-4+-\sqrt{16+88} }{2} \\ x=\frac{-4+-\sqrt{104} }{2} \\\\ x=\frac{-4+-2\sqrt{26} }{2} \\\\\\x=-4+-\sqrt{26}[/tex]

from this, using the + sign we find the first solution:

[tex]x_{1}=-2+\sqrt{26}[/tex]

and the second solution:

[tex]x_{2}=-2-\sqrt{26}[/tex]

the sum of the solutions is:

[tex]x_{1}+x_{2}=-2+\sqrt{26}-2-\sqrt{26}\\ x_{1}+x_{2}=-4[/tex]