Respuesta :

Answer:

8[tex]\sqrt{6}[/tex]

Step-by-step explanation:

Using the rule of radicals

[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] = [tex]\sqrt{ab}[/tex]

Simplifying the given radicals

[tex]\sqrt{294}[/tex]

= [tex]\sqrt{49(6)}[/tex]

= [tex]\sqrt{49}[/tex] × [tex]\sqrt{6}[/tex] = 7[tex]\sqrt{6}[/tex]

[tex]\sqrt{24}[/tex]

= [tex]\sqrt{4(6)}[/tex]

= [tex]\sqrt{4}[/tex] × [tex]\sqrt{6}[/tex] = 2[tex]\sqrt{6}[/tex]

[tex]\sqrt{54}[/tex]

= [tex]\sqrt{9(6)}[/tex]

= [tex]\sqrt{9}[/tex] × [tex]\sqrt{6}[/tex] = 3[tex]\sqrt{6}[/tex]

Hence

7[tex]\sqrt{6}[/tex] - 2[tex]\sqrt{6}[/tex] + 3[tex]\sqrt{6}[/tex]

= 8[tex]\sqrt{6}[/tex]