Respuesta :

Answer:

The perimeter of triangle is 36 units

Step-by-step explanation:

Theory:

The distance between two point is given by

L=[tex]\sqrt{(X2-X1)^{2}+(Y2-Y1)^{2} }[/tex]

As shown in figure,

Let,

Coordinate of the point A is (0,0)

Coordinate of the point B is (10,0)

Coordinate of the point C is (5,12)

Now, Perimeter of triangle is given by

Perimeter=AB+BC+AC

The length of AB:

AB=[tex]\sqrt{(X2-X1)^{2}+(Y2-Y1)^{2} }[/tex]

AB=[tex]\sqrt{(10-0)^{2}+(0-0)^{2} }[/tex]

AB=[tex]\sqrt{(10)^{2}}[/tex]

AB=10 units

The length of BC:

BC=[tex]\sqrt{(X2-X1)^{2}+(Y2-Y1)^{2} }[/tex]

BC=[tex]\sqrt{(5-10)^{2}+(12-0)^{2} }[/tex]

BC=[tex]\sqrt{(5)^{2}+(12)^{2}}[/tex]

BC=13 units

The length of AC:

AC=[tex]\sqrt{(X2-X1)^{2}+(Y2-Y1)^{2} }[/tex]

AC=[tex]\sqrt{(0-5)^{2}+(0-12)^{2} }[/tex]

AC=[tex]\sqrt{(5)^{2}+(12)^{2}}[/tex]

AC=13 units

Thus, The perimeter of triangle is,

Perimeter=AB+BC+AC

Perimeter=10+13+13

Perimeter=36 units

Ver imagen mintuchoubay