Respuesta :
The area of the regular pentagon:[tex]A=5* \frac{s*a}{2} [/tex] where s=6m, and a=3*tg 54°= 3*1.37=4.13 m
Explanation: 54° is a half of the inner angle of the pentagon. The interior angles of a pentagon add up to 540°. Each angle is 108°.
Finally: A=[tex]5* \frac{6*4.13}{2} [/tex]=61.93 m².
Answer: C) 61.9 m²
Explanation: 54° is a half of the inner angle of the pentagon. The interior angles of a pentagon add up to 540°. Each angle is 108°.
Finally: A=[tex]5* \frac{6*4.13}{2} [/tex]=61.93 m².
Answer: C) 61.9 m²
Answer:
61.9
Step-by-step explanation:
center center is 72 degree for each triangle
the distance of center to the side h=3/tan 36=4.12,
area=5* (4.12*6)/2=61.94==61.9