Respuesta :

Answer:

Let matrix [tex]A = \left[\begin{array}{ccc}1&2\\3&4\\\end{array}\right][/tex]

Let matrix [tex]B = \left[\begin{array}{ccc}5&6\\7&8\\\end{array}\right][/tex]

Matrix  [tex]A^{T} = \left[\begin{array}{ccc}1&3\\2&4\\\end{array}\right][/tex]

Matrix  [tex]B^{T} = \left[\begin{array}{ccc}5&7\\6&8\\\end{array}\right][/tex]

1. Solving for [tex](A + B)^{T}[/tex]

Firstly determine (A + B), then solve [tex](A + B)^{T}[/tex]

     [tex]A + B =\left[\begin{array}{ccc}1&2\\3&4\\\end{array}\right] + \left[\begin{array}{ccc}5&6\\7&8\\\end{array}\right][/tex]

     [tex]A + B = \left[\begin{array}{ccc}1+5 &2+6 &\\3 + 7&4 + 8\\\end{array}\right][/tex]

    [tex]A + B =\left[\begin{array}{ccc}6&8\\10&12\\\end{array}\right][/tex]

    [tex](A + B)^{T} = \left[\begin{array}{ccc}6&10\\8&12\\\end{array}\right][/tex]             ------(1)

2. Solving for [tex]A^{T} + B^{T}[/tex]

[tex]A^{T} + B^{T} = \left[\begin{array}{ccc}1&3\\2&4\\\end{array}\right] + \left[\begin{array}{ccc}5&7\\6&8\\\end{array}\right][/tex]

[tex]A^{T} + B^{T} = \left[\begin{array}{ccc}1 + 5&3 +7\\2 + 6&4+8\\\end{array}\right][/tex]

[tex]A^{T} + B^{T} = \left[\begin{array}{ccc}6&10\\8&12\\\end{array}\right][/tex]                       -----(2)

Comparing (1) and (2)

               [tex](A + B)^{T} = A^{T} + B^{T}[/tex]