Respuesta :
Answer:
[tex]V \approx 1113[/tex]
Step-by-step explanation:
Here we have
Space [tex]x[/tex] in cm Area in square centimeters - [tex]A(x)[/tex]
- [tex]x = 0[/tex] [tex]0[/tex]
- [tex]x = 1.5[/tex] 19
- [tex]x = 3[/tex] 58
- [tex]x = 4.5[/tex] 78
- [tex]x = 6[/tex] 94
- [tex]x = 7.5[/tex] 105
- [tex]x = 9[/tex] 117
- [tex]x = 10.5[/tex] 129
- [tex]x = 12[/tex] 62
- [tex]x = 13.5[/tex] 40
- [tex]x=15[/tex] 0
As we can see, [tex]0 \leq x \leq 15[/tex] and we need to divide it into 5 subintervals, where
[tex]\Delta x = \frac{15-0}{5} = 3[/tex]
is the length of each interval. Therefore, the subintervals are
[tex][0,3], [3,6], [6,9], [9,12], [12,15][/tex]
The midpoint of the first interval is calculated as
[tex]x^*_1 = \frac{3+0 }{2} = 1.5[/tex]
Similarly, we obtain that the midpoints of other subintervals are
[tex]x^*_2 =4.5, x^*_3= 7.5, x^*_4= 10.5, x^*_5 = 13.5[/tex]
By the Midpoint rule, we have
[tex]V \approx \sum_{i=1}^{5} A(x^*_i) \Delta x \\\\\phantom{V} = \Delta x (A(1.5) + A(4.5) + A(7.5) + A(10.5)+ A(13.5))[/tex]
From the given data above, we have
[tex]A(1.5) = 19, A(4.5) = 78, A(7.5) = 105, A(10.5) = 129, A(13.5) = 40[/tex]
Therefore,
[tex]V \approx 3 (19+ 78+ 105+129+40 ) =[/tex] [tex]1113[/tex]