Answer:
[tex]d \geq 0.0103 m[/tex]
Explanation:
Given data:
yield strength = 240 MPa
E = 70 GPa
P = 20,000 N
we know that
TO prevent yielding yield strength [tex]\leq 240 MPa[/tex]
[tex]\sigma_Y = frac{P}{area\ of\ cross\ section}[/tex]
taking [tex]\sigma_y = 240 MPa[/tex]
[tex]240 \times 10^6 = \frac{P}{\frac[pi}{4} \times d^2}[/tex]
solving for diameter
[tex]d^2 = \frac{20,000 \times 4}{240 \times 10^6 \times \pi}[/tex]
[tex]d^2 \geq 10.3 mm[/tex]
[tex]d \geq 0.0103 m[/tex]