Answer:
[tex]\Delta T=3.615^{\circ}C[/tex] is the drop in the water temperature.
Explanation:
Given:
Assuming the initial temperature of the ice to be 0° C.
Apply the conservation of energy:
Now from the heat equation:
[tex]Q_i=Q_w[/tex]
[tex]m_i.L=m_w.c_w.\Delta T[/tex] ......................(1)
where:
[tex]L=[/tex] latent heat of fusion of ice [tex]=333.55\ J.g^{-1}[/tex]
[tex]c_w=[/tex] specific heat of water [tex]=4.186\ J.g^{-1}.^{\circ}C^{-1}[/tex]
[tex]\Delta T=[/tex] change in temperature
Putting values in eq. (1):
[tex]14.7 \times 333.55=324\times 4.186\times \Delta T[/tex]
[tex]\Delta T=3.615^{\circ}C[/tex] is the drop in the water temperature.