Wire A and wire B are made from the same material and are under the same tension, but waves travel along string B at one-third the wave speed of string A. The radius of wire A is 0.100 mm. What is the radius of wire B

Respuesta :

Answer:

0.3 mm

Explanation:

[tex]\rho[/tex] = Density of material

[tex]\mu[/tex] = Linear density of the material = [tex]\rho A[/tex]

Area = Area = [tex]\pi r^2[/tex]

r = Radius

The velocity of a wave is given by

[tex]v=\sqrt{\dfrac{T}{\mu}}\\\Rightarrow v=\sqrt{\dfrac{T}{\rho A}}\\\Rightarrow v=\sqrt{\dfrac{T}{\rho \pi r^2}}[/tex]

It can be seen that the velocity is inversly proportional to the radius

[tex]v\propto \sqrt{\dfrac{1}{r^2}}\\\Rightarrow v\propto \dfrac{1}{r}[/tex]

So,

[tex]\dfrac{v_a}{v_b}=\dfrac{r_b}{r_a}[/tex]

From the question

[tex]v_b=\dfrac{1}{3}v_a[/tex]

[tex]\\\Rightarrow \dfrac{v_a}{\dfrac{1}{3}v_a}=\dfrac{r_b}{0.1}\\\Rightarrow 3=\dfrac{r_b}{0.1}\\\Rightarrow r_b=3\times 0.1\\\Rightarrow r_b=0.3\ mm[/tex]

The radius of wire B is 0.3 mm