y = 5xe−x, y = 0, x = 3; about the y-axis

(a) Set up an integral for the volume V of the solid obtained by rotating the region bounded by the given curve about the specified axis.
(b) Use your calculator to evaluate the integral correct to five decimal places.

Respuesta :

Using the shell method, the volume is

[tex]V=\displaystyle2\pi\int_0^3x\cdot5xe^{-x}\,\mathrm dx=10\pi\int_0^3x^2e^{-x}\,\mathrm dx[/tex]

Integrate by parts, taking

[tex]u=x^2\implies\mathrm du=2x\,\mathrm dx[/tex]

[tex]\mathrm dv=e^{-x}\,\mathrm dx\implies v=-e^{-x}[/tex]

[tex]V=\displaystyle10\pi\left(-x^2e^{-x}\bigg|_0^3+2\int_0^3xe^{-x}\,\mathrm dx\right)[/tex]

[tex]V=\displaystyle-90\pi e^{-3}+20\pi\int_0^3xe^{-x}\,\mathrm dx[/tex]

Integrate by parts again, with

[tex]u=x\implies\mathrm du=\mathrm dx[/tex]

[tex]\mathrm dv=e^{-x}\,\mathrm dx\implies v=-e^{-x}[/tex]

[tex]V=-90\pi e^{-3}+20\pi\left(-xe^{-x}\bigg|_0^3\displaystyle\int_0^3e^{-x}\,\mathrm dx\right)[/tex]

[tex]V=-150\pi e^{-3}+20\pi\displaystyle\int_0^3e^{-x}\,\mathrm dx[/tex]

[tex]V=\displaystyle-150\pi e^{-3}+20\pi(-e^{-x})\bigg|_0^3[/tex]

[tex]\boxed{V=20\pi-170\pi e^{-3}}[/tex]

Answer:

a) [tex]2\pi\int_{0}^{3}x\cdot5xe^{-x}dx[/tex]

b) 36.24204 cubic units.

The shaded region will rotate about the y-axis.

x is from 0 to 3 from the graph.

Using the Shell method the volume is :

[tex]2\pi\int_{a}^{b}radius\cdot height\cdot dx\\=2\pi\int_{0}^{3}x\cdot5xe^{-x} dx\\=10\pi\int_{0}^{3}x^{2}e^{-x}dx\\=36.24204[/tex]

Learn more: https://brainly.com/question/1214333

Ver imagen Cetacea