Respuesta :
Answer:
a) k[tex]_{s}[/tex] = 3.6 N/m ; b) 9.43 * 10¹²; c) 1.18 * 10¹¹; d) 75.08 N/m
Step-by-step explanation:
Length of iron bar = L = 2.7m;
side length of cross section = a = 0.07cm = 0.0007m;
x = 2.7 cm = 0.027m;
m = 100kg;
ρ = 7.87gm/cm³;
da = 2.28 * 10⁻¹⁰m;
a)
Fnet = F - mg
where Fnet = 0
So,
F = mg where F=k[tex]_{s}[/tex]x
k[tex]_{s}[/tex] = mg/x = 100*9.8/0.027
k[tex]_{s}[/tex] = 3.6 N/m
b)
Nchain = Aw/Aa =a²/(da)²
= (o.ooo7)²/(2.28 * 10⁻¹⁰)²
= 9.43 * 10¹²
c)
Nbond = L/da = 2.7/2.28 * 10⁻¹⁰
= 1.18 * 10¹¹
d)
Spring stiffness of wire = ksi = (Nbondk[tex]_{s}[/tex])/Nchain
= [(1.18* 10¹¹)(6*10⁴)]/(9.43 * 10¹²)
= 75.08 N/m
The spring stiffness of the wire is 75.08 N/m and the total number of side-by-side atomic chains in the wire are [tex]9.43\times 10^{12}[/tex] and trhis can be determined by using the given data.
Given :
- One mole of iron (6 × 1023 atoms) has a mass of 56 grams, and its density is 7.87 grams per cubic centimeter, so the center-to-center distance between atoms is 2.28 × 10-10 m.
- You have a long thin bar of iron, 2.7 m long, with a square cross section, 0.07 cm on a side.
- You hang the rod vertically and attach a 100 kg mass to the bottom, and you observe that the bar becomes 2.70 cm longer.
1) The net force is given by:
[tex]\rm F_N=F-mg[/tex]
The net force is zero so, the above expression becomes:
F = mg
where the value of F = Kx
Kx = mg
[tex]\rm K=\dfrac{mg}{x}=\dfrac{100\times 9.8}{0.027}[/tex]
K = 3.6 N/m
2) The total number of side by side atomic chains in the wire is:
[tex]\rm N_{chain}=\dfrac{A_w}{A_a}[/tex]
[tex]\rm N_{chain}=\dfrac{(0.0007)^2}{(2.28\times10^{-10})^2}[/tex]
[tex]\rm N_{chain}=9.43\times 10^{12}[/tex]
3) Now, the value of N bond is given by:
[tex]\rm N_{bond}=\dfrac{L}{d_a}=\dfrac{2.7}{2.28\times 10^{-10}}[/tex]
[tex]\rm N_{bond}=1.18\times 10^{11}[/tex]
4) Now, the value of the spring stiffness is given by:
[tex]\rm Stiffness = \dfrac{N_{bond}K_s}{N_{chain}}[/tex]
[tex]\rm Stiffness = \dfrac{1.18\times 10^{11}\times 6\times 10^{4}}{9.43\times 10^{12}}[/tex]
Stiffness = 75.08 N/m
For more information, refer to the link given below:
https://brainly.com/question/13095331