Respuesta :

Answer:

Common Difference(d) is    

               [tex]d=\frac{1}{6}[/tex]

Step-by-step explanation:

Given sequence is :

                 [tex]\frac{1}{6}, \frac{1}{3} ,\frac{1}{2} ,\frac{2}{3} .........[/tex]

If a sequence has a constant common difference throughout the sequence, then the sequence is called Arithmetic Progression.

Considering a sequence:

       [tex]a_1,a_2,a_3,a_4..........\\[/tex]

[tex]a_2-a_1=a_3-a_2=a_4-a_3=a_n-a_n_-_1=d[/tex]

where 'd' is the common difference of the A.P.

Similarly, finding the common difference of the given sequence.

       

                           [tex]\frac{1}{3} -\frac{1}{6}= \frac{1}{2}- \frac{1}{3}=\frac{2}{3} - \frac{1}{2}=d\\[/tex]

                              [tex]d=\frac{1}{3}-\frac{1}{6}=\frac{(2)(1)-(1)(1)}{6}=\frac{1}{6}[/tex]

                                   [tex]d=\frac{1}{6}[/tex]

Common Difference(d) is    

               [tex]d=\frac{1}{6}[/tex]

Answer:

The common difference is 1/6.