Answer:
It would take 23 years to double your money in an account paying 3% compounded quarterly
Step-by-step explanation:
Let the principal be 10
Then the Amount is 20
Time be n
Rate of interest = 3%
compounded quarterly be q =[tex]\frac{12}{4}[/tex] = 3
then
[tex]n = \frac{log(A/P)}{(q log[1+(i/q)])}[/tex]
where i = [tex]\frac{6}{100}[/tex] = 0.06
On substituting the values,
[tex]n = \frac{log(\frac{20}{10})}{(3 \times log[1+(\frac{0.03}{3})])}[/tex]
[tex]n = \frac{0.3010}{3 \times log[1+ 0.01]}[/tex]
[tex]n = \frac{0.3010}{3 \times log[1.01]}[/tex]
[tex]n = \frac{0.3010}{3 \times 0.0043}[/tex]
[tex]n = \frac{0.3010}{0.0129}[/tex]
n = 23.333
n = 23