Respuesta :

Answer:

It would take 23 years to double your money in an account paying 3​% compounded quarterly

Step-by-step explanation:

Let the principal be 10

Then the Amount is 20

Time be n

Rate of interest   =  3%

compounded quarterly be  q =[tex]\frac{12}{4}[/tex] = 3

then

[tex]n = \frac{log(A/P)}{(q log[1+(i/q)])}[/tex]

where i = [tex]\frac{6}{100}[/tex] = 0.06

On substituting the values,

[tex]n = \frac{log(\frac{20}{10})}{(3 \times log[1+(\frac{0.03}{3})])}[/tex]

[tex]n = \frac{0.3010}{3 \times log[1+ 0.01]}[/tex]

[tex]n = \frac{0.3010}{3 \times log[1.01]}[/tex]

[tex]n = \frac{0.3010}{3 \times 0.0043}[/tex]

[tex]n = \frac{0.3010}{0.0129}[/tex]

n = 23.333

n = 23