Answer:
[tex]12\dfrac{3}{5}[/tex] cubic feet.
Step-by-step explanation:
Given information:
[tex]\text{Length of container}=3\dfrac{1}{5}=\dfrac{15+1}{5}=\dfrac{16}{5}[/tex]
[tex]\text{width of container}=1\dfrac{3}{4}=\dfrac{4+3}{4}=\dfrac{7}{4}[/tex]
[tex]\text{height of container}=2\dfrac{1}{4}=\dfrac{8+1}{4}=\dfrac{9}{4}[/tex]
Volume of a cuboid is
[tex]V=length\times width \times height[/tex]
[tex]V=\dfrac{16}{5}\times \dfrac{7}{4}\times \dfrac{9}{4}[/tex]
[tex]V=\dfrac{63}{5}[/tex]
[tex]V=12\dfrac{3}{5}[/tex]
Therefore, the volume of container is [tex]12\dfrac{3}{5}[/tex] cubic feet.