A water tank has a square base of area 8 square meters. Initially the tank contains 70 cubic meters. Water leaves the tank, starting at t=0, at the rate of 2 + 4 t cubic meters per hour. Here t is the time in hours. What is the depth of water remaining in the tank after 3 hours?

Respuesta :

Answer:

Explanation:

Given

base of water tank [tex]A=8\ m^2[/tex]

Initial volume of water [tex]V=70\ m^3[/tex]

Water leaves the tank at the rate of

[tex]\frac{\mathrm{d} V}{\mathrm{d} t}=-(2+4t^3)[/tex]

Integrating rate to get desired volume

at [tex]t=0,V=70\ m^3[/tex]

at [tex]t=3\ hr,V=V[/tex]

therefore

[tex]\int_{70}^{V}dV=\int_{0}^{3}-\left ( 2+4t\right )dt[/tex]

[tex]V-70=2t+2t^2|_0^3[/tex]

[tex]V-70=-24[/tex]

[tex]V=46\ m^3[/tex]

and [tex]volume=Area\times h[/tex]

[tex]h=\frac{V}{A}[/tex]

[tex]h=\frac{46}{8}[/tex]

[tex]h=5.75\ m[/tex]

Thus height of water remaining is [tex]5.75\ m[/tex]