Respuesta :
Answer:
12 miles.
Step-by-step explanation:
We have been given that Dale bought a map of his city. It uses a scale from 1 inch to 8 miles. Dale's house and school are 1 1/2 inches apart on the map.
Let us convert 1 1/2 inches to decimal as:
[tex]1\frac{1}{2}=\frac{3}{2}=1.5[/tex]
We will use proportions to solve our given problem.
[tex]\frac{\text{Actual length}}{\text{Length on map}}=\frac{8\text{ miles}}{1 \text{ inch}}[/tex]
[tex]\frac{\text{Actual length}}{1.5\text{ Inch}}=\frac{8\text{ miles}}{1 \text{ inch}}[/tex]
[tex]\frac{\text{Actual length}}{1.5\text{ Inch}}*1.5\text{ Inch}=\frac{8\text{ miles}}{1 \text{ inch}}*1.5\text{ Inch}[/tex]
[tex]\text{Actual length}=\frac{8\text{ miles}}{1 }*1.5[/tex]
[tex]\text{Actual length}=12\text{ miles}[/tex]
Therefore, Dale's house and school are 12 miles apart.
Answer:
Step-by-step explanation:
According to the question, 1 inch scale is equal to 8 miles
So, 1 one and half inch scale is equal to 8 miles + 4 miles = 12 miles
So, the distance between the school and the house is 12 miles.