Answer:
Your expression equals [tex]2 \sin(\frac{\pi}{4})[/tex] assuming the problem was to simplify [tex]2\sin(\frac{\pi}{8}) 2\cos(\frac{\pi}{8})[/tex] to the form [tex]a\sin(\theta)[/tex].
Step-by-step explanation:
[tex]2\sin(\frac{\pi}{8}) 2\cos(\frac{\pi}{8})[/tex]
[tex]2(2)\sin(\frac{\pi}{8})\cos(\frac{\pi}{8})[/tex]
Let's use the following identity: [tex]2\sin(A)\cos(A)=\sin(2A)[/tex]
[tex]2\sin(2 \cdot \frac{\pi}{8})[/tex]
[tex]2 \sin(\frac{\pi}{4})[/tex] which is comparable to the form [tex]a\sin(\theta)[/tex].
[tex]a=2[/tex]
[tex]\theta=\frac{\pi}{4}[/tex]