Prove that 1 - sec x/1 + sec x is equal to cos x - 1/cos x + 1

Answer: See below
Step-by-step explanation:
[tex]\dfrac{1-\sec x}{1+\sec x}\quad =\quad \dfrac{\cos x-1}{\cos x+1}[/tex]
LHS --> RHS
Convert sec x to 1/(cos x):
[tex]\dfrac{1-\dfrac{1}{\cos x}}{1+\dfrac{1}{\cos x}}[/tex]
Find a common denominator for the numerator and denominator:
[tex]\dfrac{\dfrac{\cos x}{\cos x}-\dfrac{1}{\cos x}}{\dfrac{\cos x}{\cos x}+\dfrac{1}{\cos x}}\quad = \quad \dfrac{\dfrac{\cos x-1}{\cos x}}{\dfrac{\cos x+1}{\cos x}}[/tex]
Eliminate the denominators:
[tex]\quad \dfrac{\cos x-1}{\cos x+1}[/tex]
LHS = RHS so identity is proven.
Answer:
[tex]\frac{1-secx}{1+secx}[/tex] = [tex]\frac{cosx - 1}{cosx + 1}[/tex]
Step-by-step explanation:
We are to prove that 1 - sec x/1 + sec x is equal to cos x - 1/cos x + 1
To do this, we need to know that secx= 1/cosx
from the question given (1-secx) ÷ (1+secx)
Lets first simplify (1-secx)
1-secx = 1 - 1/cosx = [tex]\frac{cosx - 1}{cosx}[/tex]
Also we will go ahead and simplify (1+secx)
1 + secx = 1 + 1/cosx =[tex]\frac{cosx + 1}{cosx}[/tex]
[tex]\frac{1-secx}{1+secx}[/tex] = [tex]\frac{cosx - 1}{cosx}[/tex] ÷ [tex]\frac{cosx + 1}{cosx}[/tex]
= [tex]\frac{cosx - 1}{cosx}[/tex] × [tex]\frac{cosx}{cosx + 1}[/tex]
(The cosx at the numerator will cancel-out the cosx at the denominator)
= [tex]\frac{cosx - 1}{cosx + 1}[/tex]
[tex]\frac{1-secx}{1+secx}[/tex] = [tex]\frac{cosx - 1}{cosx + 1}[/tex]
Hence proved.