Which transformation will map Figure L onto Figure L’?

Answer:
Transformation rule: T(6,0)
Step-by-step explanation:
In given figure L, Vertices of triangle ABC
A(-3,7) B(-4,2) C(-2,4)
In given figure L', Vertices of triangle A'B'C'
A'(3,7) B(2,2) C'(4,4)
Please see the attachment for the vertices of A, B and C.
We have to find the map rule how to translate A to A'
[tex]T(x,y)\rightarrow T'(x+a,y+b)[/tex]
[tex]A(-3,7)\rightarrow A'(3,7)[/tex]
[tex]B(-4,2)\rightarrow B'(2,2)[/tex]
[tex]C(-2,4)\rightarrow C'(4,4)[/tex]
We can see x changes to 6 unit right and no change in y
So, Translation rule
[tex]T(x,y)\rightarrow T'(x+6,y+0)[/tex]
Figure L change to figure L' by rule T(6,0)
Thus, Transformation rule is T(6,0)