what is the first step when rewriting y = 3x2 9x – 18 in the form y = a(x – h)2 k? 3 must be factored from 3x2 9x x must be factored from 3x2 9x 9 must be factored from 9x – 18 3 must be factored from 3x2 – 18

Respuesta :

Steps in rewriting :
y = 3 x² + 9 x - 18 = 3 ( x² + 3 x ) - 18 = 3 (( x² + 3 x + 9/4 ) - 9/4) - 18 = 
= 3 ( x + 3/2 )² - 27/4 - 18 = 3 ( x + 3/2 )² - 99/4
Answer:
A ) 3 must be factored from 3 x² + 9 x.

Answer:

Option A - 3 must be factored from  [tex]3x^2+9x[/tex]

Step-by-step explanation:

Given : Function [tex]y=3x^2+9x-18[/tex]

To find : What is the first step when rewriting  [tex]y=3x^2+9x-18[/tex] in the form [tex]y = a(x -h)^2+k[/tex].

Solution :

To convert into the form  [tex]y = a(x -h)^2+k[/tex] we follow the steps as:

Function [tex]y=3x^2+9x-18[/tex]

Step 1- 3 must be factored from  [tex]3x^2+9x[/tex]

[tex]y=3(x^2+3x)-18[/tex]

Step 2 - Completing the square by adding and subtracting [tex]\frac{9}{4}[/tex] (square the half of 9)

[tex]y=3(x^2+3x+\frac{9}{4}-\frac{9}{4})-18[/tex]

Step 3- Solve

[tex]y=3(x+\frac{3}{2})^2-\frac{27}{4}-18[/tex]

[tex]y=3(x+\frac{3}{2})^2-\frac{99}{4}[/tex]

This is in the form [tex]y = a(x -h)^2+k[/tex]

where, a= 3 , [tex]k=\frac{-99}{4}[/tex] and  [tex]h=\frac{-3}{2}[/tex]

Therefore, Option A is correct.

3 must be factored from  [tex]3x^2+9x[/tex]