A sphere has a diameter of 14 units. What is the volume of the sphere in cubic units? If a cylinder has the same radius as the sphere and a height of 14 units, what is the volume of the cylinder? Use 3.14 for π.

Respuesta :

see the attachment for answer:
V≈1436.76 units cube (sphere)
V=πr^2h (cylinder)
r=7
h=14

V≈2155.13 units cube (cylinder) 
Ver imagen Hussain514

Answer:

[tex]\text{Volume of sphere}\approx 1436.03[/tex] cubic units.

[tex]\text{Volume of cylinder}=2154.04[/tex] cubic units.

Step-by-step explanation:

We have been given that a sphere has a diameter of 14 units. We are asked to find the volume of our given sphere.

[tex]\text{Volume of sphere}=\frac{4}{3}\pi r^3[/tex], where r represents the radius of sphere.

First of all, let us divide the diameter of sphere by 2 to find the radius of our given sphere.

[tex]\text{Radius of sphere}=\frac{14}{2}=7[/tex]

[tex]\text{Volume of sphere}=\frac{4}{3}*3.14*7^3[/tex]

[tex]\text{Volume of sphere}=\frac{4}{3}*3.14*343[/tex]

[tex]\text{Volume of sphere}=\frac{4308.08}{3}[/tex]

[tex]\text{Volume of sphere}=1436.02666\approx 1436.03[/tex]

Therefore, the volume of sphere is 1436.03 cubic units.

[tex]\text{Volume of cylinder}=\pi r^2h[/tex], where,

r = Radius of cylinder,

h = Height of cylinder.

Upon substituting our given values in above formula we will get,

[tex]\text{Volume of cylinder}=\pi*7^2*14[/tex]

[tex]\text{Volume of cylinder}=3.14*49*14[/tex]

[tex]\text{Volume of cylinder}=2154.04[/tex]

Therefore, the volume of cylinder is 2154.04 cubic units.