Respuesta :

Step-by-step explanation:

Using arc length formula for parametric equations:

L = ∫ₐᵇ √((dx/dt)² + (dy/dt)²) dt

L = ∫₀² √((3t²)² + (-2t)²) dt

L = ∫₀² √(9t⁴ + 4t²) dt

L = ∫₀² t√(9t² + 4) dt

If u = 9t² + 4, then du = 18t dt, or 1/18 du = t dt.

When t = 0, u = 4.  When t = 2, u = 40.

L = 1/18 ∫₄⁴⁰ √u du

L = 1/18 (⅔ u^(³/₂)) |₄⁴⁰

L = 1/27 (u√u)|₄⁴⁰

L = 1/27 (40√40 − 4√4)

L ≈ 9.07

Your answer is correct!