Respuesta :

Answer:

A = (4.5π + 18) cm²

P = 3π + 6(1 + √2) cm

Step-by-step explanation:

Give figure is a composite structure of one semicircle and one right triangle.

Therefore, area of the figure = Area of the semicircle + Area of the triangle

Area of the given semicircle = [tex]\frac{1}{2}(\pi r^{2} )[/tex]

Here r = radius of the semicircle

Area of the semicircle = [tex]\frac{1}{2}(\pi )(3)^2[/tex] [Given : AB = BC]

                                     = 4.5π cm²

Area of the triangle = [tex]\frac{1}{2}(\text{Base})(\text{Height})[/tex]

                                 = [tex]\frac{1}{2}(6)(6)[/tex]

                                 = 18 cm²

Total area = 4.5π + 18

             A = (4.5π + 18) cm²

Perimeter of the figure = Circumference of the semicircle + AB + AC

Circumference of the semicircle = πr

                                                      = 3π

AB = 6 cm

AC = [tex]\sqrt{(\text{AB})^2+(\text{BC})^2}[/tex]

     = [tex]\sqrt{6^2+6^2}[/tex]

     = [tex]6\sqrt{2}[/tex]

Perimeter 'P' = 3π + 6 + [tex]6\sqrt{2}[/tex]

                     = 3π + 6(1 + √2) cm