Respuesta :

Answer:

see explanation

Step-by-step explanation:

Given

16[tex]y^{4}[/tex] - 256[tex]x^{12}[/tex] ← factor out 16 from each term

= 16([tex]y^{4}[/tex] - 16[tex]x^{12}[/tex] ) ← difference of squares which factors in general as

a² - b² = (a - b)(a + b), thus

[tex]y^{4}[/tex] - 16[tex]x^{12}[/tex]

= (y² )² - (4[tex]x^{6}[/tex] )²

= (y² - 4[tex]x^{6}[/tex] )(y² + 4[tex]x^{6}[/tex] )

Now y² - 4[tex]x^{6}[/tex] ← is also a difference of squares

= y² - (2x³)²

= (y - 2x³)(y + 2x³)

Thus

16[tex]y^{4}[/tex] - 256[tex]x^{12}[/tex]

= 16(y - 2x³)(y + 2x³)(y² + 4[tex]x^{6}[/tex] )

Answer:

Step-by-step explanation:

4y^2+16x^6, 2y, 4x^3, 2y, 4x^3