factor the polynomial expression 16y^4-256x^12

Answer:
see explanation
Step-by-step explanation:
Given
16[tex]y^{4}[/tex] - 256[tex]x^{12}[/tex] ← factor out 16 from each term
= 16([tex]y^{4}[/tex] - 16[tex]x^{12}[/tex] ) ← difference of squares which factors in general as
a² - b² = (a - b)(a + b), thus
[tex]y^{4}[/tex] - 16[tex]x^{12}[/tex]
= (y² )² - (4[tex]x^{6}[/tex] )²
= (y² - 4[tex]x^{6}[/tex] )(y² + 4[tex]x^{6}[/tex] )
Now y² - 4[tex]x^{6}[/tex] ← is also a difference of squares
= y² - (2x³)²
= (y - 2x³)(y + 2x³)
Thus
16[tex]y^{4}[/tex] - 256[tex]x^{12}[/tex]
= 16(y - 2x³)(y + 2x³)(y² + 4[tex]x^{6}[/tex] )