Respuesta :
Answer:
(D)E(evens) = E(odds) because the different probabilities and values end up balancing out, creating a fair game. Therefore, Jessica may choose whichever she likes.
Step-by-step explanation:
The table of the probability of rolling the sums is presented below.
[tex]\left\begin{array}{ccccccccccccc}$Roll&2&3&4&5&6&7&8&9&10&11&12\\\\$Prob&\frac{1}{36}&\frac{2}{36}&\frac{3}{36}&\frac{4}{36}&\frac{5}{36}&\frac{6}{36}&\frac{5}{36}&\frac{4}{36}&\frac{3}{36}&\frac{2}{36}&\frac{1}{36} \end{array}\right[/tex]
P(an even sum)
[tex]=\frac{1}{36}+\frac{3}{36}+\frac{5}{36}+\frac{5}{36}+\frac{3}{36}+\frac{1}{36} \\\\=\frac{18}{36}[/tex]
Therefore, P(an odd sum) [tex]=\frac{18}{36}[/tex]
Therefore, E(evens) = E(odds) because the different probabilities and values end up balancing out, creating a fair game. Therefore, Jessica may choose whichever she likes.
Answer:
D /Even-odds
Step-by-step explanation:
just took test on edge 2020