Find the area of the surface generated by revolving the curve xequalsStartFraction e Superscript y Baseline plus e Superscript negative y Over 2 EndFraction in the interval 0 less than or equals y less than or equals ln 5 about the​ y-axis.

Respuesta :

The area is given by the integral,

[tex]\displaystyle\int_0^{\ln5}2\pi x(y)\sqrt{1+\left(\dfrac{\mathrm dx}{\mathrm dy}\right)^2}\,\mathrm dy[/tex]

We have

[tex]x=\dfrac{e^y+e^{-y}}2\implies\dfrac{\mathrm dx}{\mathrm dy}=\dfrac{e^y-e^{-y}}2[/tex]

So now compute the integral:

[tex]\displaystyle\frac\pi2\int_0^{\ln5}(e^y+e^{-y})\sqrt{4+(e^y-e^{-y})^2}\,\mathrm dy[/tex]

Substitute [tex]u=e^y-e^{-y}[/tex] and [tex]\mathrm du=(e^y+e^{-y})\,\mathrm dy[/tex]:

[tex]\displaystyle\frac\pi2\int_0^{\frac{24}5}\sqrt{4+u^2}\,\mathrm du[/tex]

Another substitution, [tex]u=2\tan v[/tex] and [tex]\mathrm dv=2\sec^2v\,\mathrm dv[/tex]:

[tex]\displaystyle\frac\pi2\int_0^{\tan^{-1}\frac{12}5}\sqrt{4+(2\tan v)^2}\,2\sec^2v\,\mathrm dv[/tex]

[tex]\displaystyle2\pi\int_0^{\tan^{-1}\frac{12}5}\sqrt{1+\tan^2v}\,\sec^2v\,\mathrm dv[/tex]

[tex]\displaystyle2\pi\int_0^{\tan^{-1}\frac{12}5}\sec^3v\,\mathrm dv[/tex]

There's a well-known formula for the integral of secant cubed, but if you don't know it off the top of your head (like me), you can integrate by parts:

[tex]\displaystyle I=\int\sec^3v\,\mathrm dv=\sec v\tan v-\int\sec v\tan^2v\,\mathrm dv[/tex]

Expand the remaining the integral in terms of powers of secant:

[tex]\displaystyle\int\sec v\tan^2v\,\mathrm dv=\int\sec v(\sec^2v-1)\,\mathrm dv=\int\sec^3v\,\mathrm dv-\int\sec v\,\mathrm dv[/tex]

so that

[tex]I=\sec v\tan v-\left(I-\displaystyle\int\sec v\,\mathrm dv\right)[/tex]

[tex]2I=\sec v\tan v+\displaystyle\int\sec v\,\mathrm dv[/tex]

[tex]\implies I=\displaystyle\int\sec^3v\,\mathrm dv=\frac{\sec v\tan v}2+\frac12\ln|\sec v+\tan v|+C[/tex]

Coming back to the area integral, we use the formula above to get

[tex]\displaystyle2\pi\int_0^{\tan^{-1}\frac{12}5}\sec^3v\,\mathrm dv=\pi\left(\sec v\tan v+\ln|\sec v+\tan v|\right)\bigg|_0^{\tan^{-1}\frac{12}5}[/tex]

Next,

[tex]\tan\left(\tan^{-1}\dfrac{12}5\right)=\dfrac{12}5[/tex]

[tex]\sec\left(\tan^{-1}\dfrac{12}5\right)=\dfrac{13}5[/tex]

[tex]\tan0=0[/tex]

[tex]\sec0=1[/tex]

so the area is

[tex]\pi\left(\dfrac{13}5\cdot\dfrac{12}5+\ln\left(\dfrac{13}5+\dfrac{12}5\right)-1\cdot0-\ln(1+0)\right)=\boxed{\left(\dfrac{156}{25}+\ln5\right)\pi}[/tex]