Consider the expression. (StartFraction 2 m Superscript negative 1 baseline n Superscript 5 Baseline Over 3 m Superscript 0 Baseline n Superscript 4 Baseline EndFraction) squared What is the value of the expression if m = –5 and n = 3? Negative StartFraction 24 Over 25 EndFraction Negative StartFraction 4 Over 25 EndFraction StartFraction 4 Over 25 EndFraction StartFraction 24 Over 25 EndFraction

Respuesta :

Answer:

The correct option is option (3) 4 ÷ 25.

Step-by-step explanation:

The expression in terms of m and n is:

[tex]F(m,n)=[\frac{2m^{-1}n^{5}}{3m^{0}n^{4}}]^{2}[/tex]

Exponent rule of division:

[tex]a^{x}\div a^{y}=a^{x-y}[/tex]

Compute the value of the expression for m = -5 and n = 3 as follows:

[tex]F(m,n)=[\frac{2m^{-1}n^{5}}{3m^{0}n^{4}}]^{2}[/tex]

[tex]F(-5,3)=[\frac{2\csdot (-5)^{-1}\cdot (3)^{5}}{3\cdot (-5)^{0}\cdot (3)^{4}}]^{2}[/tex]

             [tex]=\{\frac{2}{3}\times [(-5)^{-1-0}\times (3)^{5-4}}]\}^{2}\\\\=\{\frac{2}{3}\times \frac{-1}{5}\times 3\}^{2}\\\\=\{-\frac{2}{5}\}^{2}\\\\=\frac{4}{25}[/tex]

Thus, the correct option is option (3) 4 ÷ 25.

Answer:

4/25

Step-by-step explanation:

I just did the test