Respuesta :

Answer:

[tex]x = 1 \ + \sqrt{-19}\ or\ x = 1 \ - \sqrt{-19}[/tex]

Step-by-step explanation:

Given

[tex]x^2 + 20 = 2x[/tex]

Required

Solve using quadratic formula

We start by representing the above equation property

[tex]x^2 + 20 = 2x[/tex]

Subtract 2x from both sides

[tex]x^2 + 20 - 2x= 2x - 2x[/tex]

[tex]x^2 + 20 - 2x= 0[/tex]

[tex]x^2 -2x + 20 = 0[/tex]

Given a quadratic equation of the form [tex]ax^2 +bx + c = 0[/tex]

The quadratic formula is as follows;

[tex]x = \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]

Where a = 1, b = -2 and c = 20

[tex]x = \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]

[tex]x = \frac{-(-2) \± \sqrt{(-2)^2 - 4*1*20}}{2 * 1}[/tex]

[tex]x = \frac{2 \± \sqrt{4 - 80}}{2}[/tex]

[tex]x = \frac{2 \± \sqrt{-76}}{2}[/tex]

Factorize -76

[tex]x = \frac{2 \± \sqrt{-19 * 4}}{2}[/tex]

Split the square root

[tex]x = \frac{2 \± \sqrt{-19} *\sqrt{4}}{2}[/tex]

Square root of 4 is 2

[tex]x = \frac{2 \± \sqrt{-19} * 2}{2}[/tex]

[tex]x = \frac{2 \± 2\sqrt{-19}}{2}[/tex]

Split Fraction

[tex]x = \frac{2}{2} \± \frac{2\sqrt{-19}}{2}[/tex]

[tex]x = 1 \ + \sqrt{-19}\ or\ x = 1 \ - \sqrt{-19}[/tex]

The expression can not be further simplified;

Hence, [tex]x = 1 \ + \sqrt{-19}\ or\ x = 1 \ - \sqrt{-19}[/tex]