Respuesta :

Answer:

Option (3).(Bottom left)

Step-by-step explanation:

Formula for the exponential growth is,

h(x) = [tex]a(1+\frac{r}{100} )^{t}[/tex]

where r = rate of exponential growth

a = initial amount

t = duration or time

Option (1) (Top left)

h(t) = [tex](1+0.18)^{\frac{t}{6}}[/tex]

     = [tex](1+\frac{18}{100})^t[/tex]

Rate of exponential growth will be,

r = 18%

Option (2) (Top right)

k(t) = [tex](\frac{3}{8})^t[/tex]

     = [tex](1-\frac{5}{8})^t[/tex]

     = [tex](1-0.625)^t[/tex]

     = [tex](1-\frac{62.5}{100})^t[/tex]

r = -62.5%

This function shows the exponential decay rate of 62.5%.

Option (3) (Bottom left)

f(t) = [tex]1.36^t[/tex]

    = [tex](1+0.36)^t[/tex]

    = [tex](1+\frac{36}{100})^t[/tex]

r = 36%

Option (4) (Bottom right)

g(t) = [tex]0.86^t[/tex]

     = [tex](1-0.14)^t[/tex]

     = [tex](1-\frac{14}{100})^t[/tex]

r = -14%

This function shows the decay rate of 14%.

Therefore, Option (3). (Bottom left) shows the greatest exponential growth.