Which expression is equivalent to StartFraction 2 a + 1 Over 10 a minus 5 Endfraction divided by StartFraction 10 a Over 4 a squared minus 1 EndFraction?

Respuesta :

Answer:

[tex]\frac{(2a + 1)^2}{50a}[/tex]

Step-by-step explanation:

Given

[tex]\frac{2a + 1}{10a - 5} / \frac{10a}{4a^2 - 1}[/tex]

Required

Find the equivalent

We start by changing the / to *

[tex]\frac{2a + 1}{10a - 5} / \frac{10a}{4a^2 - 1}[/tex]

[tex]\frac{2a + 1}{10a - 5} * \frac{4a^2 - 1}{10a}[/tex]

Factorize 10a - 5

[tex]\frac{2a + 1}{5(2a - 1)} * \frac{4a^2 - 1}{10a}[/tex]

Expand 4a² - 1

[tex]\frac{2a + 1}{5(2a - 1)} * \frac{(2a)^2 - 1}{10a}[/tex]

[tex]\frac{2a + 1}{5(2a - 1)} * \frac{(2a)^2 - 1^2}{10a}[/tex]

Express (2a)² - 1² as a difference of two squares

Difference of two squares is such that: [tex]a^2- b^2= (a+b)(a-b)[/tex]

The expression becomes

[tex]\frac{2a + 1}{5(2a - 1)} * \frac{(2a - 1)(2a + 1)}{10a}[/tex]

Combine both fractions to form a single fraction

[tex]\frac{(2a + 1)(2a - 1)(2a + 1)}{5(2a - 1)10a}[/tex]

Divide the numerator and denominator by 2a - 1

[tex]\frac{(2a + 1)((2a + 1)}{5*10a}[/tex]

Simplify the numerator

[tex]\frac{(2a + 1)^2}{5*10a}[/tex]

[tex]\frac{(2a + 1)^2}{50a}[/tex]

Hence,

[tex]\frac{2a + 1}{10a - 5} / \frac{10a}{4a^2 - 1}[/tex] = [tex]\frac{(2a + 1)^2}{50a}[/tex]

Answer:

D

Step-by-step explanation:

edge 2020