Respuesta :

Answer:

[tex]n = 241[/tex]

Step-by-step explanation:

Given

[tex]5x^2 + nx + 48[/tex]

Required

Determine the highest value of n

From the given equation, 5 is a prime number;

So, the factors of x² is 5x and x or -5x and -x

Since [tex]5x^2 + nx + 48[/tex] has all shades of positive terms, we'll make use of 5x and x

The factorized expression can then be:

[tex](5x + a)(x + b)[/tex]

Open the brackets

[tex]5x^2 + ax + 5bx + ab[/tex]

Equate this to the given expression

[tex]5x^2 + ax + 5bx + ab = 5x^2 + nx + 48[/tex]

[tex]5x^2 + (a + 5b)x + ab = 5x^2 + nx + 48[/tex]

By direct comparison;

[tex]5x^2 = 5x^2[/tex]

[tex](a + 5b)x = nx[/tex]

[tex]a + 5b = n[/tex]  ---- (1)

[tex]ab = 48[/tex] --- (2)

From (2) above, the possible values of a and b are:

[tex]a = 1, b = 48[/tex]

[tex]a = 2, b = 24[/tex]

[tex]a = 3, b = 16[/tex]

[tex]a = 4, c = 12[/tex]

[tex]a = 6, b = 8[/tex]

[tex]a = 8, b = 6[/tex]

[tex]a = 12, b = 4[/tex]

[tex]a = 16, b = 3[/tex]

[tex]a = 24, b = 2[/tex]

[tex]a = 48, b = 1[/tex]

Of all these values; the value of a and b that gives the highest value of n is;

[tex]a = 1, b = 48[/tex]

So;

Substitute 1 for a and 48 for b in (2) [tex]a + 5b = n[/tex]

[tex]1 + 5 * 48 = n[/tex]

[tex]1 + 240 = n[/tex]

[tex]241 = n[/tex]

[tex]n = 241[/tex]

Hence, the largest value of n is 241

Answer:

Step-by-step explanation:

The two factors of $5x^2+nx+48$ must be in the form $(5x+A)(x+B)$. $A$ and $B$ must be positive integers to form the largest value of $n$. Therefore, $AB=48$ and $5B+A=n$. To form the largest value of $n$, $B$ must equal $48$. Therefore, $A=1$. \[5B+A=5(48)+1=\boxed{241}\]