Respuesta :
Answer:
Yes based on the result 0.4841 the internet users watch less TV because the mean would be placed at 0.5 and it is less than 0.5
Step-by-step explanation:
a)The variable "weekly time spent watching television" is normally distributed and is skewed right.
b) Mean = x` 2.35 hours
Standard deviation = s/√n = 1.93/√40=1.93/6.3245553= 0.3051598
c) P(2<X<3) = P (2-2.35/ 0.3051598< Z< 3 -2.35/ 0.3051598)
= P ( -1.14694 < Z <2.13003)
= 0.3729 + 0.4830
=0.8559
So the probability is 0.8559
(0.8559 we check the value of 2.13 from the normal distribution tables and add with the value of 1.14 to get the in between value -1.14694 < Z <2.13003)
d) Here n = 35 , s= 1.93 , mean = 2.35 and x= 1.89
So Putting the values
P (X ≤ 1.89) = P (Z ≤ 1.89- 2.35/ 1.93 / √35)
= P ( Z ≤ -0.238341/ 5.9160797)
= P ( Z ≤ -0.04028)
= 0.5 - 0.0159
= 0.4841
Similarly again subtracting from 0.5 the value from normal distribution table to get less than or equal to value.
Yes based on the result 0.4841 the internet users watch less TV because the mean would be placed at 0.5 and it is less than 0.5
The mean value is 2.35, SD is 1.93 with an SD error of 0.3051597 and the probability is 0.8559, and yes 0.4841 internet users watch less TV.
It is given that the amount of time adults spend watching television is closely monitored by firms because this helps to determine advertising pricing for commercials.
It is required to find the standard deviation and probability.
What is a confidence interval for population standard deviation?
It is defined as the sampling distribution following an approximately normal distribution for known standard deviation.
We know the formula for standard error:
[tex]\rm SE = \frac{s}{\sqrt{n} }[/tex]
Where 's' is the standard error
and n is the sample size.
In the question the value of s = 1.93 hours
and sample size n = 40
[tex]\rm SE = \frac{1.93}{\sqrt{40} }\\[/tex]
SE = 0.3051597
For the probability between 2 and 3 hours.
= P(2<X<3)
[tex]\\\rm =P(\frac{2-x)}{s} < Z < \frac{3-x)}{s})\\\\\rm = P(\frac{(2-2.35)}{0.3051598} < Z < \frac{(3-x)}{0.3051598})\\\\[/tex] (because the mean value x is 2.35)
=P(-1.14694 <Z < 2.13003)
=0.3729+ 0.4830 ( values get from Z table for -1.14 and 2.13 )
=0.8559
For P(X≤1.89)
[tex]\rm P(Z\leq \frac{(x'-x)}{\frac{s}{\sqrt[]{n} } } )\\\\\rm P(Z\leq \frac{(1.89-2.35)}{\frac{1.89}{\sqrt[]{35} } } )[/tex]
= P(Z ≤ -0.04028)
= 0.5 - 0.0159
=0.4841
Based on the result of 0.4841 the internet users watch less TV because the mean would be placed at 0.5 and it is less than 0.5.
Thus, the mean value is 2.35, SD is 1.93 with an SD error of 0.3051597 and the probability is 0.8559, and yes internet users watch less TV.
Learn more about the standard deviation here:
https://brainly.com/question/12402189