When a cube is inscribed in a sphere of radius r, the length Lof a side of the cube is . If a positive point charge Qis placed at the center of the spherical surface, the ratio of the electric flux sphereat the spherical surface to the flux cubeat the surface of the cube is(sphere / cube)

Respuesta :

Answer:

  Ф_cube /Ф_sphere = 3 /π

Explanation:

The electrical flow is

      Ф = E A

where E is the electric field and A is the surface area

Let's shut down the electric field with Gauss's law

       Фi = ∫ E .dA = [tex]q_{int}[/tex] / ε₀

the Gaussian surface is a sphere so its area is

        A = 4 π r²

the charge inside is

        q_{int} = Q

we substitute

       E 4π r² = Q /ε₀

       E = 1 / 4πε₀   Q / r²

To calculate the flow on the two surfaces

* Sphere

       Ф = E A

        Ф = 1 / 4πε₀  Q / r² (4π r²)

        Ф_sphere = Q /ε₀

* Cube

Let's find the side value of the cube inscribed inside the sphere.

In this case the radius of the sphere is half the diagonal of the cube

          r = d / 2

We look for the diagonal with the Pythagorean theorem

         d² = L² + L² = 2 L²

         d = √2 L

         

we substitute

          r = √2 / 2 L

          r = L / √2

          L = √2  r

now we can calculate the area of ​​the cube that has 6 faces

          A = 6 L²

          A = 6 (√2  r)²

          A = 12 r²

the flow is

          Ф = E A

          Ф = 1 / 4πε₀  Q/r²  (12r²)

          Ф_cubo = 3 /πε₀  Q

the relationship of these two flows is

         Ф_cube /Ф_sphere = 3 /π