Respuesta :
Answer: x + y + z = 4
-1 + 2 + 3 = 4
Explanation:
2x + 3y - z = 5 (1)
x - 3y + 2z= -6 (2)
3x + y - 4z = -8 (3)
————————-
2x + 3y - z = 5 (Add (1) and (2)
X - 3y + 2z = -6
————————
3x + z = -1 (4)
3x + y - 4z = -8 Add (3) and (2)
x - 3y + 2z = -6
————————
3(3x + y - 4z = -8)
x - 3y + 2z = -6
—————————
9x + 3y - 12z = -24
x -3y + 2z = -6
—————————-
10x - 10z = -30
x - z = -3 (5)
Add (4) and (5)
3x - z = -1
x - z = -3
—————
4x = -4
x = -1
Plug x = -1 in (5)
x - z = -3
-1 - z = -3
-z = -2
z = 2
Plug x and z in (2):
x - 3y + 2z = -6
-1 - 3y + 2(2) = -6
-1 - 3y + 4 = -6
-3y + 3 = -6
-3y = -9
y = -9/-3
y = 3
Therefore, y + z + x = 3 + 2 -1 = 4
-1 + 2 + 3 = 4
Explanation:
2x + 3y - z = 5 (1)
x - 3y + 2z= -6 (2)
3x + y - 4z = -8 (3)
————————-
2x + 3y - z = 5 (Add (1) and (2)
X - 3y + 2z = -6
————————
3x + z = -1 (4)
3x + y - 4z = -8 Add (3) and (2)
x - 3y + 2z = -6
————————
3(3x + y - 4z = -8)
x - 3y + 2z = -6
—————————
9x + 3y - 12z = -24
x -3y + 2z = -6
—————————-
10x - 10z = -30
x - z = -3 (5)
Add (4) and (5)
3x - z = -1
x - z = -3
—————
4x = -4
x = -1
Plug x = -1 in (5)
x - z = -3
-1 - z = -3
-z = -2
z = 2
Plug x and z in (2):
x - 3y + 2z = -6
-1 - 3y + 2(2) = -6
-1 - 3y + 4 = -6
-3y + 3 = -6
-3y = -9
y = -9/-3
y = 3
Therefore, y + z + x = 3 + 2 -1 = 4
Answer:
Once we got
[tex]x=-1[/tex]
[tex]y=3[/tex]
[tex]z=2[/tex]
[tex]\boxed{\text{The sum is 4}}[/tex]
Step-by-step explanation:
Given the linear system:
[tex]\begin{cases} 2x + 3y-z = 5 \\ x- 3y + 2z = -6 \\ 3x + y - 4z = -8 \end{cases}[/tex]
Let's solve it using matrices. I will use Cramer's rule
[tex]M=\left[\begin{array}{ccc}2&3&-1\\1&-3&2\\3&1&-4\end{array}\right][/tex]
Considering determinant as D.
[tex]D=\begin{vmatrix}2&3&-1\\1&-3&2\\3&1&-4\\\end{vmatrix}=40[/tex]
[tex]M_x = \left[\begin{array}{ccc}5&3&-1\\-6&-3&2\\-8&1&-4\end{array}\right] \implies D_x = \begin{vmatrix}5&3&-1\\-6&-3&2\\-8&1&-4\\\end{vmatrix}=-40[/tex]
[tex]M_y = \left[\begin{array}{ccc}2&5&-1\\1&-6&2\\3&-8&-4\end{array}\right] \implies D_y = \begin{vmatrix}2&5&-1\\1&-6&2\\3&-8&-4\\\end{vmatrix}=120[/tex]
[tex]M_z = \left[\begin{array}{ccc}2&3&5\\1&-3&-6\\3&1&-8\end{array}\right] \implies D_z= \begin{vmatrix}2&3&5\\1&-3&-6\\3&1&-8\\\end{vmatrix}=80[/tex]
So, we have
[tex]$x=\frac{D_x}{D} =\frac{-40}{40}=-1 $[/tex]
[tex]$y=\frac{D_y}{D} =\frac{120}{40}=3$[/tex]
[tex]$z=\frac{D_z}{D} =\frac{80}{40}=2 $[/tex]