Respuesta :

Step-by-step explanation:

Hey, there!!

Let's simply work with it,

Here,

In figure ABC,

let a= 14

b= 19

and c= 8.

Using cosine rule,

[tex] {c}^{2} = {a}^{2} + {b}^{2} - 2ab.cosc[/tex]

putting value of all we get,

[tex] {8}^{2} = {14}^{2} + {19}^{2} - 2 \times 14 \times 19 \times cosx[/tex]

Now, simplifying them we get,

[tex]64 = 196 + 361 - 532.cosx[/tex]

[tex]532cosx = 557 - 64[/tex]

[tex]or \: 532cosx = 493[/tex]

[tex]or \: cosx = \frac{493}{532} [/tex]

cosx= 0.926691

Putting cos inverse,

[tex]x = {cos}^{ - 1} (0.926691) [/tex]

Therefore, x= 22.0752°

By rounding off we get,

x= 22° { as 0 is smaller than 5 itsvalue dont change}.

Hope it helps....

Ver imagen Sueraiuka