Respuesta :
[tex]A(x_A;\ y_A);\ B(x_B;\ y_B).\\\\Distance\ d\ between\ A\ and\ B:\\\\d=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}[/tex]
[tex]P(-4;\ 3);\ Q(6;\ 1)\\\\|PQ|=\sqrt{(6-(-4))^2+(1-3)^2}=\sqrt{10^2+(-2)^2}=\sqrt{100+4}\\\\=\sqrt{104}=\sqrt{4\cdot26}=\sqrt4\cdot\sqrt{26}=2\sqrt{26}[/tex]
[tex]P(-4;\ 3);\ Q(6;\ 1)\\\\|PQ|=\sqrt{(6-(-4))^2+(1-3)^2}=\sqrt{10^2+(-2)^2}=\sqrt{100+4}\\\\=\sqrt{104}=\sqrt{4\cdot26}=\sqrt4\cdot\sqrt{26}=2\sqrt{26}[/tex]
The distance between P ( -4, 3) & Q (6,1)
[tex]PQ = \sqrt{104} = 10.2[/tex]
So, 10.2 is your answer
[tex]PQ = \sqrt{104} = 10.2[/tex]
So, 10.2 is your answer