Answer:
The answer is "[tex]\bold{ 259.2 \times 10^{11} }[/tex]".
Explanation:
The amount of kilograms, which travel in a thick sheet of hydrogen:
[tex]M= -DAt \frac{\Delta C}{ \Delta x} \\\\[/tex]
[tex]D =1.0 \times 10^{8} \ \ \ \frac{m^2}{s} \\\\ A = 0.20 \ m^2\\\\t = 1\ \ h = 3600 \ \ sec \\\\[/tex]
calculating the value of [tex]\Delta C:[/tex]
[tex]\Delta C =C_A -C_B[/tex]
[tex]= 2.4 - 0.6 \\\\ = 1.8 \ \ \frac{kg}{m^3}[/tex]
calculating the value of [tex]\Delta X:[/tex]
[tex]\Delta x = x_{A} -x_{B}[/tex]
[tex]= 0 - (5\ mm) \\\\ = - 5 \ \ mm\\\\= - 5 \times 10^{-3} \ m[/tex]
[tex]M = -(1.0 \times 10^{8} \times 0.20 \times 3600 \times (\frac{1.8}{-5 \times 10^{-3}})) \\\\[/tex]
[tex]= -(1.0 \times 10^{8} \times 720 \times (\frac{1.8}{-5 \times 10^{-3}})) \\\\= -(1.0 \times 10^{8} \times \frac{ 1296}{-5 \times 10^{-3}})) \\\\= (1.0 \times 10^{8} \times 259.2 \times 10^3)) \\\\= 259.2 \times 10^{11} \\\\[/tex]