A stereo speaker is rated at P1000 = 52 W of output at 1000 Hz. At 20 Hz, the sound intensity level LaTeX: \betaβ decreases by 1.3 dB. What is the power output P

Respuesta :

Answer:

The  value of the power is   [tex]P_c  =  38.55 \  W [/tex]

Explanation:

From the question we are told that

   The  power  rating [tex]P_{1000} =P_b=  52 \  W[/tex]

    The frequency is  [tex]f = 1000 \  Hz[/tex]

    The  frequency at which the sound intensity decreases  [tex]f_k  =  20 \  Hz[/tex]

     The decrease in intensity is by [tex]\beta  =  1.3 dB[/tex]

Generally the  initial intensity of the speaker  is mathematically represented as

     [tex]\beta_1 =  10 log_{10} [\frac{P_b}{P_a} ][/tex]

Generally the intensity of the speaker after it has been decreased is

       [tex]\beta_2 =  10 log_{10} [\frac{P_c}{P_a} ][/tex]

So

[tex]\beta_1-\beta_2 =  10 log_{10} [\frac{P_c}{P_a} ]- 10 log_{10} [\frac{P_b}{P_a} ][/tex]

=>  [tex]\beta =  10 log_{10} [\frac{P_c}{P_a} ]- 10 log_{10} [\frac{P_b}{P_a} ]= 1.3[/tex]

=>  [tex]\beta =10log_{10} [\frac{\frac{P_b}{P_a}}{\frac{P_c}{P_a}} ] = 1.3[/tex]

=>  [tex]\beta =10log_{10} [\frac{P_b}{P_c} ] = 1.3[/tex]

=> [tex]10log_{10} [\frac{P_b}{P_c} ] = 1.3[/tex]

=> [tex]log_{10} [\frac{P_b}{P_c} ] = 0.13[/tex]

taking atilog of both sides

[tex][\frac{P_b}{P_c} ] = 10^{0.13}[/tex]      

=>[tex][\frac{52}{P_c} ] = 10^{0.13}[/tex]      

=>  [tex]P_c  =  \frac{52}{1.34896}[/tex]

=>   [tex]P_c  =  38.55 \  W [/tex]