The pKb values for the dibasic base B are pKb1=2.10 and pKb2=7.54. Calculate the pH at each of the points in the titration of 50.0 mL of a 0.60 M B(aq) solution with 0.60 M HCl(aq).

Respuesta :

Complete Question

The pKb values for the dibasic base B are pKb1=2.10 and pKb2=7.54. Calculate the pH at each of the points in the titration of 50.0 mL of a 0.60 M B(aq) solution with 0.60 M HCl(aq).

(a) before addition of any HCl (b) after addition of 25.0 mL of HCl

Answer:

a The value  is  [tex]pH =12.81[/tex]

b [tex]pH  = 11.9[/tex]

Explanation:

From the question we are told that

  The first pKb value  for B is [tex]pK_b_1  =  2.10[/tex]

   The second pKb value  for B is [tex]pK_b_2  =  7.54[/tex]

     The volume is  [tex]V =   50.0 mL   =[/tex]

     The  concentration  of  B is  [tex][B]  =  0.60 M[/tex]

     The concentration of [tex]C_A =  0.60 M[/tex]

Generally the reaction equation showing the first dissociation of B is  

[tex]\ce{B_{(aq) } + H_2O _{(l)} <=> BH^+ _{(aq)}  +  OH^- _{(aq)} }[/tex]

Here the ionic  constant for B is mathematically represented as

      [tex]K_i  =  \frac{[BH^+] [OH^-]}{[B]}[/tex]

Let denot the concentration of  [BH^+]  as  z  and  since [tex][BH^+] =  [OH^-][/tex] then [tex][OH^-][/tex] is also  z

So  [B] =  0.60  -  z  

Here [tex]K_i[/tex] is ionic constant for the first reaction of a dibasic base B and the value is

   [tex]K_i  =  7.94 *10^{-3}[/tex]

So

      [tex] 7.94 *10^{-3}=  \frac{z^2}{ 0.60 - z}[/tex]

=>   [tex]z^ 2 + 0.00794 z - 0.00476[/tex]

using quadratic formula to solve this equation

     [tex]z = 0.0651[/tex]

Hence the concentration of  [tex]OH^{-}[/tex] is   [tex][OH^-] =0.0651[/tex]

Generally  [tex]pOH =  -log [OH^-][/tex]

=>    [tex]pOH =  -log (0.065)[/tex]

=>    [tex]pOH = 1.187 [/tex]

Generally the pH is mathematically represented as

    [tex]pH = 14 - 1.187[/tex]

      [tex]pH =12.81[/tex]

Generally the volume of [tex]HCl[/tex] at the second dissociation of the base B is   [tex] 50 mL [/tex]

The volume of the [tex]HCl[/tex] half way to the first dissociation of the base is 25mL

Now the pOH at half way to the first dissociation of the base is  

     [tex]pOH  =  -log(K_i)[/tex]

=>   [tex]pOH  =  -log(0.00794)[/tex]

=>   [tex]pOH  =  2.100[/tex]

Generally the pH after addition of 25.0 mL of HCl is  

    [tex]pH  =  14 -  2.100[/tex]\

=>   [tex]pH  = 11.9[/tex]

The first dissociation's equation is as follows:

[tex]B(aq) + H_2O(l) \leftrightharpoons BH^{+} (aq) + OH^{-}(aq) \\\\[/tex]

Constant of base ionization

[tex]\to K_{bl}=\frac{[BH^{+}][OH^{-}]}{[B]}\\\\ \to 7.94\times 10^{-3} = \frac{x\times x}{(0.95- x)} \\\\\to 7.94\times 10^{-3} = \frac{x^2}{(0.95- x)} \\\\\to x^2=7.94\times 10^{-3} (0.95-x) \\\\\to x^2=7.543\times 10^{-3} - 7.94\times 10^{-3} x) \\\\\to x^2=7.543\times 10^{-3} - 7.94\times 10^{-3} x) \\\\\to x = 0.0830\ M\\\\[/tex]

So,

[tex]\to [OH^{-}] = 0.0830\ M\\\\[/tex]

The second dissociation of the base equation is

[tex]BH^{+}\ (aq) + H_20\ (l) \leftrightharpoons BH_2^{2+}\ (aq) + OH^{-}\ (aq) \\\\[/tex]

Constant of base ionization

[tex]\to K_{bl}=\frac{[BH^{+}][OH^{-}]}{[B]}\\\\ \to 3.2 \times 10^{-8} =\frac{y \times (0.0830+y)}{(0.0830- y)}\\\\[/tex]

[tex]\to y= \frac{ 3.2 \times 10^{-8} \times (0.0830- y)}{ (0.0830+y)} \\\\ \to y= \frac{ 3.2 \times 10^{-8} \times (0.0830- y)}{ (0.0830+y)} \\\\ \to y = 3.2\times 10^{-8}[/tex]

So,

[tex]\to [OH^{-}] = 0.0830\ M \\\\\to pOH = 1.08 \\\\\to pH = 14.00 - pOH = 12.92\\\\[/tex]

Learn more:

brainly.com/question/15412094

Ver imagen codiepienagoya