A directed segment ST¯¯¯¯¯ is partitioned from S (−5,0) to T in a 32 ratio at point M (10, 15). What are the coordinates of point T? (20, 25) (15, 20) (7, 3) (5, 15

Respuesta :

Answer:

[tex]T = (20,25)[/tex]

Step-by-step explanation:

Given

[tex]S = (-5,0)[/tex]

[tex]M = (10,15)[/tex]

[tex]Ratio = 3:2[/tex]

Required

Determine the coordinate of T

Line division by ratio is calculated using:

[tex]M(x,y) = (\frac{mx_2 + nx_1}{m+n},\frac{my_2 + ny_1}{m+n})[/tex]

Where:

[tex](x_1,y_1) = (-5,0)[/tex]

[tex](x,y) = (10,15)[/tex]

[tex]m:n = 3:2[/tex]

So, we have:

[tex](10,15) = (\frac{3 * x_2 + 2 * -5}{3+2},\frac{3 * y_2 + 2 * 0}{3+2})[/tex]

[tex](10,15) = (\frac{3x_2 -10}{5},\frac{3y_2}{5})[/tex]

Multiply through by 5

[tex]5 * (10,15) = (\frac{3x_2 -10}{5},\frac{3y_2}{5}) * 5[/tex]

[tex](50,75) = (3x_2 -10,3y_2)[/tex]

By comparison:

[tex]3x_2 - 10 = 50[/tex]

[tex]3y_2 = 75[/tex]

[tex]3x_2 - 10 = 50[/tex]

[tex]3x_2 = 50 + 10[/tex]

[tex]3x_2 = 60[/tex]  --- Divide through by 3

[tex]x_2 = 20[/tex]

[tex]3y_2 = 75[/tex]

[tex]y_2 =75/3[/tex] --- Divide through by 3

[tex]y_2 =25[/tex]

Hence:

The coordinates of T is

[tex]T = (20,25)[/tex]