Answer:
[tex]T = (20,25)[/tex]
Step-by-step explanation:
Given
[tex]S = (-5,0)[/tex]
[tex]M = (10,15)[/tex]
[tex]Ratio = 3:2[/tex]
Required
Determine the coordinate of T
Line division by ratio is calculated using:
[tex]M(x,y) = (\frac{mx_2 + nx_1}{m+n},\frac{my_2 + ny_1}{m+n})[/tex]
Where:
[tex](x_1,y_1) = (-5,0)[/tex]
[tex](x,y) = (10,15)[/tex]
[tex]m:n = 3:2[/tex]
So, we have:
[tex](10,15) = (\frac{3 * x_2 + 2 * -5}{3+2},\frac{3 * y_2 + 2 * 0}{3+2})[/tex]
[tex](10,15) = (\frac{3x_2 -10}{5},\frac{3y_2}{5})[/tex]
Multiply through by 5
[tex]5 * (10,15) = (\frac{3x_2 -10}{5},\frac{3y_2}{5}) * 5[/tex]
[tex](50,75) = (3x_2 -10,3y_2)[/tex]
By comparison:
[tex]3x_2 - 10 = 50[/tex]
[tex]3y_2 = 75[/tex]
[tex]3x_2 - 10 = 50[/tex]
[tex]3x_2 = 50 + 10[/tex]
[tex]3x_2 = 60[/tex] --- Divide through by 3
[tex]x_2 = 20[/tex]
[tex]3y_2 = 75[/tex]
[tex]y_2 =75/3[/tex] --- Divide through by 3
[tex]y_2 =25[/tex]
Hence:
The coordinates of T is
[tex]T = (20,25)[/tex]