How does a flea travel so fast math worksheet PLEASE HURRY!
show all work in written form please

The sum (or difference) of 2 terms of the same type is a common stereotype with such a coefficient equal to the sum of the coefficient of two coefficients.
When two algebraic expressions are added (or removed), the same terms are added (or subtracted), and different terms are written as required.
Following are the solution to the given points:
[tex]1)\ (6x+5)+(-3x+7)=(6x+5-3x+7)= \bold{3x+12}\\\\ 2) (-9x - 13) + (8x+3)= (-9x -13 + 8x+3)= -x-10=\bold{-(x+10)}\\\\3)\ (2x - 8) - (4x- 2)=(2x - 8 - 4x+ 2)= \bold{-2x-6} \\\\4)\ (5x+8)-(6x+2)=(5x+8-6x-2)= \bold{(-x+6)}\\\\5)\ (3x^2 -6x-7) + (-2x^2-4x+ 12)= (3x^2 -6x-7 -2x^2-4x+ 12)= \bold{(x^2 -10x-5)}\\\\[/tex]
[tex]6)\ (-x^2-5x+8)- (4x^2-7x-10)= (-x^2-5x+8- 4x^2+7x+10)= \bold{(-5x^2+2x+18)} \\\\7) \ (6x^2-3x+10)-(-6x^2+11x+9)=(6x^2-3x+10+6x^2-11x-9)= \bold{(12x^2-14x+1)}\\\\[/tex]
[tex]8)\ (-13x^3 +15x^2 -12x) +(-x^3- 4x^2 -15x +1)= (-13x^3 +15x^2 -12x -x^3- 4x^2 -15x +1)= \bold{(-14x^3 +11x^2 -27x +1)} \\\\9)\ (7x^3-x+14)-(2x^2-19)= (7x^3-x+14-2x^2+19)= \bold{ (7x^3-2x^2-x+33)}\\\\10) \ (8x-3x^3-5) + (4x^3-6x^2+11)= (8x-3x^3-5 + 4x^3-6x^2+11)= \bold{(x^3 -6x^2+ 8x+6)}\\\\11)\ (-5x -16) - (-3x^3+ 2x^2 +9x)= (-5x -16 +3x^3- 2x^2 -9x)= \bold{(3x^3-2x^2-14x-16)}\\[/tex]Learn more:
brainly.com/question/11227332