Respuesta :
- Vertex : ( 0, 0 ).
- Focus: ( p/2, 0 );
y² = 1/4 x
y² = 2 p x ⇒ 2 p = 1/4
p = 1/8
p/2 = 1/16
F ( 1/16, 0)
- Directrix:
x = - p/2 x
x = - 1/16 x
- The focal length:
2 p = 2 · 1/8 = 1/4
- Focus: ( p/2, 0 );
y² = 1/4 x
y² = 2 p x ⇒ 2 p = 1/4
p = 1/8
p/2 = 1/16
F ( 1/16, 0)
- Directrix:
x = - p/2 x
x = - 1/16 x
- The focal length:
2 p = 2 · 1/8 = 1/4
Answer:
The vertex is (0,0), focus of the parabola is [tex](\frac{1}{16},0)[/tex], directrix of the parabola is [tex]y=-\frac{1}{16}[/tex], focal width is [tex]\frac{1}{4}[/tex].
Step-by-step explanation:
The given equation of parabola is
[tex]x=4y^2[/tex]
It can be written as
[tex]y^2=\frac{1}{4}x[/tex] ....(1)
The general equation of parabola is
[tex](y-k)^2=4p(x-h)[/tex] ... (2)
Where, (h,k) is vertex, (h+p,k) is focus, y=h-p is directrix and |4p| is focal width.
On comparing (1) and (2), we get
[tex]h=0,k=0[/tex]
The vertex is (0,0).
[tex]4p=\frac{1}{4}[/tex]
[tex]p=\frac{1}{16}[/tex]
Focus of the parabola is
[tex](h+p,k)=(0+\frac{1}{16},0)=(\frac{1}{16},0)[/tex]
Therefore focus of the parabola is [tex](\frac{1}{16},0)[/tex].
Directrix of the parabola is
[tex]y=h-p=0-\frac{1}{16}=-\frac{1}{16}[/tex]
Directrix of the parabola is [tex]y=-\frac{1}{16}[/tex].
Focal width is
[tex]|4p|=|4\times \frac{1}{16}|=\frac{1}{4}[/tex]
Focal width is [tex]\frac{1}{4}[/tex].