Respuesta :

Answer:

Its (4x+3)(x+2) 100%

Step-by-step explanation:


we have

[tex]4x^{2} +11x+6[/tex]

Equate the expression to zero

[tex]4x^{2} +11x+6=0[/tex]

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]4x^{2} +11x=-6[/tex]

Factor the leading coefficient

[tex]4(x^{2} +(11x/4))=-6[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side

[tex]4(x^{2} +(11x/4)+(121/64))=-6+(121/16)[/tex]

[tex]4(x^{2} +(11x/4)+(121/64))=(25/16)[/tex]

[tex](x^{2} +(11x/4)+(121/64))=(25/64)[/tex]

Rewrite as perfect squares

[tex](x+(11/8))^{2}=(25/64)[/tex]

Square root both sides

[tex]x+(11/8)=(+/-)\sqrt{\frac{25}{64}}[/tex]

[tex]x=(-11/8)(+/-)\frac{5}{8}[/tex]

[tex]x=(-11/8)+\frac{5}{8}=-\frac{6}{8}=-\frac{3}{4}[/tex]

[tex]x=(-11/8)-\frac{5}{8}=-\frac{16}{8}=-2[/tex]

therefore

[tex]4x^{2} +11x+6=4(x+\frac{3}{4})(x+2)=(4x+3)((x+2)[/tex]

the answer is

[tex](4x+3)((x+2)[/tex]