Answer:
a) S varies inversely as G
[tex]S\propto\frac{1}{G}[/tex]
or [tex]S=\frac{K}{G}[/tex]
b) S=4 when G=7
Step-by-step explanation:
a) Write the variation.
S varies inversely as G
[tex]S\propto\frac{1}{G}[/tex]
So, We can write: [tex]S=\frac{K}{G}[/tex]
Where k is constant of proportionality
b) Find S when G is 7.
Now, if S=8, G = 3.5 we will find K
[tex]S=\frac{K}{G}\\K=SG\\K=8\times 3.5\\K=28[/tex]
So, value of K= 28
Now, find S when G is 7
[tex]S=\frac{K}{G}\\S=\frac{28}{7}\\S=4[/tex]
So, S=4 when G=7