Answer:
Mean absolute deviation of the heights is 3.
Explanation:
Given the heights: 75, 78, 77, 79, 83, 85
Average value, X = [tex]\frac{75+78+77+79+83+85}{6}[/tex]
= 79.5
Mean absolute deviation = [tex]\frac{1}{n}[/tex](/[tex]x_{1}[/tex] - X/ + /[tex]x_{2}[/tex] - X/ + /[tex]x_{3}[/tex] - X/ + /[tex]x_{4}[/tex] - X/ + /[tex]x_{5}[/tex] - X/ + /[tex]x_{6}[/tex] - X/)
Mean absolute deviation = [tex]\frac{1}{6}[/tex](/75 - 79.5/ + /78 - 79.5/ + /77 - 79.5/ + /79 - 79.5/ + /83 - 79.5/ + /85 - 79.5/)
= [tex]\frac{1}{6}[/tex](4.5 + 1.5 + 2.5 + 0.5 + 3.5 + 5.5)
= [tex]\frac{1}{6}[/tex](18)
= 3
The mean absolute deviation of the heights is 3.